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Abstract: Temporal variability in water clarity for South Florida’s marine ecosystems was examined through satel-
lite-derived light attenuation (Kd coefficients, in the context of wind- and weather patterns. Reduced water clarity along 
Florida’s coasts is often the result of abrupt wind-resuspension events and other exogenous factors linked to frontal 
passage, storms, and precipitation. Kd data between 1998 and 2013 were synthesized to form a normalized Kd index 
(KDI) and subsequently compared with Self-Organizing Map (SOM)-based wind field categorizations to reveal spatio-
temporal patterns and their inter-relationships. Kd climatological maximums occur from October through December 
along southern sections of the West Florida Shelf (WFS) and from January through March along the Florida Straits. 
Spatial clusters of elevated Kd occur along 3 spatial domains: central WFS, southern WFS, and Florida Straits near the 
Florida Reef Tract, where intra-seasonal variability is the highest, and clarity patterns are associated with transitional 
wind patterns sequenced with cyclonic circulation. Temporal wind transitions from southerly to northerly, typically ac-
companying frontal passages, most often result in elevated Kd response. Results demonstrate the potential of using 
synoptic climatological analysis and satellite indices for tracking variability in water clarity and other indicators related 
to biological health. 
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1. Introduction 

outh Florida encompasses a unique coastal en-
vironment as epitomized by its clear subtropical 
waters, vast biodiversity of living marine re-

sources, and touristic appeal. In particular, the oligo-
trophic waters surrounding the Florida Keys, Florida 
Reef Tract, Florida Bay, and Florida Shelf systems are 
home to a wide array of distinct coral, seagrass, ma-
rine invertebrate, and fish species. These waters are  

also internationally known for their commercial and 
recreational value for scuba diving, fishing, and beach 
use. Despite the vast ecological services and critical 
attributes contained in these waters, the entire region 
is under constant threat from increased human activi-
ties and climate/weather disturbances including a pos-
itive trend in tropical cyclone activity, extreme precip-
itation, flooding, and storm surge (Kunkel et al, 2013; 
Martinez et al, 2012; Obeysekera, Park, Irizarry-Ortiz 
et al, 2011). Consequently, one of the most immediate 
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impacts from these disturbances is on coastal wa-
ter clarity, as substantial runoff, sediment, and particle 
resuspension can often lead to significant degradation 
in water clarity and quality, affecting all marine ani-
mals and plants that rely on ambient light.  

Typically expressed as light attenuation (or Kd; the 
vertical attenuation coefficient for downward irradi-
ance), water column clarity is dependent upon f our 
major water quality agents: 1) re-suspended or terres-
trial input of inorganic sediments; 2) chromophoric 
dissolved organic matter (CDOM); 3) chlorophyll; and 
4) other suspended particulate matter (Biber et al, 
2005; McPherson et al, 2011). In combination, the-
se constituents influence absorption and scattering of 
light with depth and the overall light regime available 
for plants and animals. In both optically deep and 
shallow waters, satellites have proven useful for cap-
turing changes in water clarity over fairly short time 
scales (Barnes et al, 2013; Barnes and Hu, 2015; Hu 
et al, 2014; Palandro et al, 2004). Barnes et al. (2013) 
used high resolution Kd imagery and optimized algo-
rithms from NASA’s Moderate Resolution Imaging 
Spectroradiometer (MODIS) on the satellite Aqua 
to characterize spatiotemporal water clarity patterns 
and variability in the optically shallow waters of the 
Florida Keys. While Barnes et al. (2013) generally 
found low variability in water clarity for the Florida 
Reef Tract, strong variations in clarity can occur else-
where throughout the region and throughout the year. 
In terms of the accuracy of satellite-based Kd data, 
Barnes and Hu (2015) made a comparison of Kd esti-
mates across three sensors: Sea-viewing Wide Field- 
of-view Sensor (SeaWiFS); MODIS, and Visible In-
frared Imager Radiometer Suite (VIIRS) sensors; and 
found strong agreement in retrievals for most of the 
South Florida region. The overall assessment of wa-
ter clarity changes in response to climate variabil-
ity, compounded by human activities, requires con-
sistent observations from multiple sensors, over fre-
quent temporal scales, and with synoptic coverage 
(Hedley et al, 2016). 

Multiple factors contribute to changes in optical 
properties that influence water clarity conditions in 
South Florida coastal waters. Excessive rainfall/d-
ischarge events in combination with seasonal and ab-
rupt storm and cold front passage can force sediment 
and particle resuspension, alter CDOM and nutrient 
delivery into the coastal zone and trigger changes in 
the water column constituents that impact clarity (Hu 
et al, 2006; Hu et al, 2003; Hu et al, 2004; Le et al, 

2013; Lohrenz et al, 1999; Ransibrahmanakul and 
Stumpf, 2002; Barnes et al, 2013; Lee et al, 2002). 
Excessive and widespread phytoplankton blooms and 
‘‘black water’’ events contribute substantially to ch-
anges in water column constituents (Hu et al, 2003; 
Hu et al, 2004; Hu et al, 2006; Conmy et al, 2009; 
Neely et al, 2004). Conmy et al. (2009) attributed 
major changes in the underwater light field of the 
West Florida Shelf (WFS) to tropical and extratropical 
storms, discharge, and resuspension events, hinting at 
the profound influence of wind forcing on water con-
stituents in the region. The overall influence of synop-
tic systems such as storms and cold fronts in combina-
tion with discharge, winds and transport likely co-co-
ntribute to water clarity changes at sub-regional scales, 
especially in Florida Shelf and Florida Keys systems 
where upwelling/mixing and transport of materials 
“downstream” of river sources can occur (Del Castillo 
et al, 2000; Hu et al, 2004; Lee et al, 2002; Gramer, 
2013). 

Linking the influence of weather systems such as 
storms, cold fronts, and other patterns with in-water 
impacts provides a useful tool for understanding caus-
al mechanisms and improving predictions of critical 
light field changes. To better understand the role of 
weather patterns and climate variability on water qual-
ity variable response in South Florida, Sheridan et al. 
(2013) applied progressive synoptic-to-satellite tech-
niques to isolate weather patterns linked to elevat-
ed chlorophyll levels and algal blooms. Pirhalla et al. 
(2014) followed using similar techniques to isolate 
lethal cold-season atmospheric patterns and ocean-sea 
surface temperature (SST) anomalies linked to bio-
logical stress and mortality in marine life. Lee et al. (in 
press) further used synoptic methods coupled with a 
non-linear neural network-based time series model to 
develop long term historical reconstructions of water 
clarity for southeast coastal waters. Although these 
studies largely attribute in-water impacts to specific 
weather situations over longer temporal scales (e.g., 
monthly to interannual time scales), more abrupt per-
turbations, particularly with circulation-induced resus-
pension and water events, were not addressed. Con-
sequently, unanswered questions remain about the con-
nections between water events and wind patterns, es-
pecially in areas where cumulative wind-wave stress, 
turbidity, and sedimentation may be a limiting factor 
to biological health and mortality (e.g., coral and 
seagrass loss or die-offs). Through this work, we at-
tempt to better define the role of winds on clarity pat-
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terns, and further resolve the spatial and temporal 
scales related to wind influences on historical water 
quality-related events that have impacted the region 
over nearly the last two decades. 

In this paper, we extend our previous work in ap-
plying synoptic climatological analysis to marine eco-
system response, and examine synoptic-scale wind 
fields in relation to water clarity and turbidity events. 
We use synoptic methods to identify and define the 
wind patterns and temporal transitions most connected 
to the variability exhibited in Kd for South Florida, 
with emphasis on elevated turbidity events in sur-
rounding areas of the West Florida Shelf, Florida Keys, 
Florida Straits, and within the Florida Keys National 
Marine Sanctuary. This investigation was conducted 
through a blending of Kd light index products and 
self-organizing maps of wind fields to characterize the 
spatiotemporal extent of poor (and optimal) water clar-
ity patterns and their association with discrete wind 
pattern classifications. The specific objectives were to 
1) identify and define seasonal water clarity conditions 
and ranges (i.e., poor to optimal) for a reconstruct-
ed blended satellite Kd climatology; 2) map spa-
tial clusters of reduced water clarity conditions due to 
the effects of wind forcing through image compositing 
of Kd and wind SOMs; and 3) evaluate synoptic tran-
sitions of wind patterns and coincidence with satellite- 
derived light attenuation index along areas of the West 
Florida Shelf, Florida Reef Tract and Florida Straits.  

2. Materials and Methods 

2.1 Atmospheric Data Processing and Synoptic 
Classification Using Self-Organizing Maps 

For atmospheric processing and wind analysis, daily 
wind fields of mean meridional (v) and zonal (u) 
10-meter component data were obtained from the 
North American Regional Reanalysis (NARR; Mesi-
nger et al, 1996) project website (Table 1). Specifical-
ly, data for the 727 grid point locations encompass-
sed by the spatial domain spanning 30°N to 24°N 
and 78°W to 88°W, and the temporal domain spanning 
1 January 1979 t o 30 J une 2014 w ere acquired. The 
1454 wind components (2 components each at 727 

locations) were first standardized and then subjected 
to an s-mode principal components analysis (PCA), 
with the resulting principal component scores (PCs) 
retained as the input data into the classification. De-
veloped by Kohonen et al. (1995), self-organizing 
maps (SOMs) are a clustering methodology increas-
ingly employed by synoptic climatologists over the 
past two decades (e.g., Cavazos, 1999; Hewtison and 
Crane, 2002; Sheridan and Lee, 2011). Unlike tradi-
tional clustering methods, SOMs are able to order the 
resultant clusters (e.g., synoptic-scale wind patterns) 
onto a multi-dimensional plane, with similar clusters 
adjacently located in this ‘SOM-space’, and dissimilar 
patterns spaced further apart (Hewtison and Crane, 
2002). This structure to the classification allows for a 
more intuitive visualization of circulation-based syn-
optic patterns and their impacts on any climate-related 
outcome (e.g., water clarity; Sheridan and Lee, 2011). 
For a detailed discussion on the use of the SOM 
methodology in synoptic climatology, please see 
Hewitson and Crane (2002) and Sheridan and Lee 
(2011). 

All SOM procedures were completed using 
MATLAB version 2013b with the Neural Network 
and Statistical Toolboxes. Since the first two PCs ac-
counted for nearly equal variance (41.8% and 38.5%, 
respectively) in the standardized wind data set, and the 
preliminary shape of the SOM is based upon the space 
encompassed by the two leading principal components 
of the input data, a nearly square 6×5 SOM was selected. 
The MATLAB default learning rates were used for the 
ordering (0.90) and tuning (0.02) phases of the SOM 
algorithm, the initial neighborhood distance was set 
equal to the maximum distance between SOM-nodes 
(5), and the SOM algorithm was set to iterate 10,000 
times. MATLAB’s default hexagonal topology was cha-
nged to the more traditional grid-shaped topology in 
order to conform to most SOM-based synoptic clima-
tological research (e.g., Cassano et al, 2015; Hewitson 
and Crane, 2002); and the distance linking function 
was changed to ‘boxdist’ in order to properly accom-
modate this topology (MATLAB, 2015). After running 
to completion, the SOM essentially classifies each day 
into one of 30 wind patterns (WPs) based upon the 

 
Table 1. Data products analyzed in this research 

Sensor/ Platform Time span Variables Coverage Frequency Quality Source 

NARR 1979–2014 U- and V-Winds 32km grid Daily High NCEP, ESRL/PSD 

SeaWiFS 1997–2010 Kd 490 1 km grid Near daily High NASA 

MODIS 2002–2014 Kd 488 1 km grid Near daily High NASA 
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similarity of that day’s synoptic-scale wind pattern 
with those of all other days in the data set. Component 
(vector) averaged wind speed and wind directions wi-
thin the domain were computed separately for each of 
the 30 resultant WPs and mapped using the MATLAB 
Mapping Toolbox. This gridded topology of the SOM 
results in a 2-dimensonal lattice of wind patterns. 

2.2 Satellite Data Processing and Kd  Climatology  

Satellite data used in the study consist of blended Kd 
imagery and time series from two different NASA 
sensors: (1) SeaWiFS and 2) MODIS onboard the sat-
ellite Aqua (MODIS/A; Table 1). Reflectance data 
from both sensors were used to derive Kd data prod-
ucts including the standard kd_lee (Lee et al, 2005; 
Lee et al, 2009) and a modification of the kd_lee al-
gorithm validated for optically shallow water applica-
tions (Barnes et al, 2013). The entire time series of 
SeaWiFS and MODIS Level-2 ocean color data within 
the bounds of 24° to 31°N, 78° to 98°W were acquired 
from NASA Goddard Space Flight Center. From these, 
the kd_lee algorithm and its modification were applied 
to the mapped Rrs data to derive Kd (488) for optically 
deep and shallow targets in South Florida. Pixels with 
negative Rrs were excluded from analysis as were pix-
els identified as low quality by the Level-2 processing 
flags (see Barnes and Hu, 2015 for specific flags used). 
Prior to analysis, all Kd (488) values were log-trans-
formed to make their distributions normal. Next, us-
ing both SeaWiFS and MODIS data, daily mean im-
ages were created for each day from 1997–2013. A 
3×3 mean spatial and 3 day mean temporal filter was 
applied to all Kd (488) scenes, whereby pixels were 
excluded if any previously masked pixels (either due 
to negative Rrs or Level-2 processing flags) were 
within the 3×3 window with the pixel of interest in 
the center. 

Barnes et al. (2013) applied empirical orthogonal 
function analysis to separate dominant modes of Kd 
variability in Florida Keys waters and concluded the 
seasonal cycle explained over 85% of the variation in 
Kd. To estimate seasonal and higher frequency pat-
terns of Kd variability for the entire domain, we con-
structed a daily-scale Kd climatology as:  
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Where JKd  is the climatological mean Kd on 

Julian day J, tKd  is the 3-day mean log-transformed 
Kd at time t, and n is the number of valid satellite ob-
servations at that pixel during the time frame t. We 
used the climatology to compare selected upper and 
lower quantiles and first order statistics to highlight 
spatial Kd patterns and general timing of Kd events 
and water clarity patterns. Individual Kd pixel values 
were first rank ordered over their entire distribution 
then grouped by quantile level as: <5th (extremely cle-
ar), 5th–25th (clear), 75th–95th (poor and), and >95th 
(extremely poor). Pixels for which the value of the 5th 
percentile was greater than 0.1 m−1 were removed pri-
or to further analysis due to likely bottom contamina-
tion. Finally, Kd products from MODIS and SeaWiFS 
were blended to create a moving index of Kd depar-
ture from climatological normal, termed Kd index or 
KDI. KDI was calculated using the filtered Kd time 
series with moving pixel values standardized to ac-
count for seasonal effects and areas of differing wa-
ter clarity (e.g., chronically turbid areas) using: 
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The KDI, normalized by the mean and divided by 
standard deviation, enables comparison of pixels from 
different locations with different mean conditions, and 
highlights areas with greatest temporal deviation. As a 
result, Kd and KDI imagery reveal unique spatial pat-
terns during specific events over the South Florida 
region. All atmospheric, Kd and KDI data analyses 
were performed for all calendar months. Image pixels 
were extracted and analyzed along a transect spanning 
3 biogeographic sub-regions: central West Florida Sh-
elf (WFS), Florida Keys (gulf side), and Florida 
Straits near the Florida Reef Tract, through pixel-base-
d extractions along the transect line.  

The study area and spatial domain for wind extrac-
tions and satellite image analysis is shown in Figure 1A. 
During specific Kd events, spatial patterns of increased 
light attenuation can be detected from MODIS imagery 
(Figures 1B and C). This single day image acquired 
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Figure 1. Study area and domain for NARR wind extractions 
and NASA Kd image analysis (A). MODIS 1 km Kd imagery 
for February 10, 2010 (B), represent water clarity conditions 
and its corresponding KDI (C) showing increased Kd (i.e., re-
duced clarity) for the eastern portion of the region of interest. 
KDI was derived as log-transformed Kd for February 10, 2010, 
minus the climatological mean Kd for February 10 of 1997– 
2013, normalized by Kd standard deviation. Default Kd prod-
ucts (used in optically deep waters) are available from NASA 
Ocean Biology Processing Group, while KDI products modi-
fied for optically shallow waters are available from University 
of South Florida (USF) and NOAA. Ocean/World base map 
layer was provided by Esri, DeLorme, GEBCO, NOAA NGDC, 
and other contributors. 
 
February 10, 2010 s hows a high-Kd event that signif-
icantly reduced the underwater light field along sec-
tions of the West Florida Shelf, including parts of the 
Florida Reef Tract (Barnes et al, 2013). Elevated Kd 
and KDI values (>3) were evident for an extended 
period from mid-January through March, 2010. The 
event occurred during a time of active and severe 
weather including a cold-air outbreak and cold-snap 
event of extreme duration, causing region-wide air and 
sea surface temperatures to drop well below tolerance 
levels for multiple animal species (Pirhalla et al, 2014; 
Roberts et al, 2014; Lirman et al, 2011). 

2.3 Estimating Water Clarity Patterns from Wind 
SOM Node Occurrences 

To gain a better understanding of classified wind pat-
tern effects on water clarity conditions, normalization  
procedures taken from Sheridan et al. (2013) were 

used to develop climatological KDI monthly image  
composites, computed as the ratio of median KDI con-
ditions for the SOM node (WP) of interest to the ex-
pected median KDI condition for all nodes (WPs). 
That is, for each WP in each calendar month, the ratio 
of KDI median only for dates when the node of inter-
est occurred over the grand median was calculated as:  

x

1 30
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where J,WPMd KDI
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 is the median KDI associated with 

WPx, and similarly, 
1 30J,WPsgrand Md KDI
−

 is the 

climatological median KDI for all WPs. Spatial clus-
ters of elevated water clarity patterns for each node 
were mapped in SOM-space by month, then averaged 
for the months of November through March.  

To further evaluate individual WP spatial associa-
tion with elevated KDI, a second metric, SOM WP 
node percent deviation during elevated KDI condi-
tions, was computed. For each climatological month 
of the year, we calculated this metric as the probability 
of a WP occurring when KDI > 1.5, subtracted by the 
random probability of all 30 WPs under all KDI con-
ditions. This calculation was performed to standardize 
WP percent deviation across all 30 WPs. The percent 
deviation metric represents the likelihood of WPx oc-
curring when KDI > 1.5 compared to what would be 
expected for all 30 WPs purely by random chance. For 
example, if WPx occurred 25% of the time when KDI > 
1.5, and all 30 WPs had a random probability of 3.33% 
for all KDI conditions, the WP node percent deviation 
would be +21.67%.  

In addition to identifying individual wind patterns 
associated with elevated Kd patterns during the day of 
a Kd event, we also tested whether transitions from 
one WP to another were associated with a Kd event. 
This involved using a 3-day window prior to Kd 

events (KDI > 1.5) to bin the most frequent nodes that 
resulted in elevated KDI values across the domain. 
For example, if WPx occurred 1 t o 3 days prior to a 
KDI event, WPx was binned with the event and the 
associated WPy at the time of the event. Counts of the 
leading WPs prior to KDI event were summed then 
rank ordered across SOM-space as: 
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WPs that most often occurred 1–3 days prior to a WP 
with a high (> 1.5) median KDI value were identified 
to reveal the importance of specific wind transitions 
linked to elevated Kd conditions.  

3. Results 

3.1 Water Clarity Patterns of Variability 

The climatological cycle of Kd 488 across the artificial 
transect line is depicted in Figure 2. The annual 
Kd cycle from January through December (Figures 2B 
andC) reveals Kd mean and standard deviation, respe-
ctively. Mean Kd ranges from approximately 0.01 m-1 
in open waters of the West Florida Shelf, to near 1 m-1 

seaward of Charlotte Harbor, FL. During the au-
tumn-winter cycle, a sharp Kd spatial gradient appears 
separating nearshore higher attenuation (more turbid) 
areas near Sarasota, Charlotte Harbor, and Key West, 
FL from lower attenuation (less turbid) areas along the 
WFS and Florida Strait. During winter, Figure 2B 
shows Kd values ranging from 0.5 m−1 along the 10 m 
isobath seaward of Sarasota, FL to Charlotte Harbor, 
FL (A–B), 0.5 m−1 north of Key West (C), and near 
0.04 m−1 south of the Florida Keys in the Florida 
Strait (E–G). Temporal patterns of Kd in Figure 2C 
reveal greater variability during autumn, winter and 
early spring in northern and southern sections of the 
transect (A–B; C–D; E–G), with an abrupt decrease in 
variability evident in mid-April. 

More detailed within-season spatial variations in 
water clarity are shown in Figure 3, which separates 
the Kd climatology into quantiles of extremely clear 
water to extreme turbid water. Each pixel was sort-
ed by most prominent month of occurrence within 
each quantile bin. Spatial variations in months of tur-
bid conditions (Figure 3C) show an autumn to winter 

preference in elevated Kd signals, especially in No-
vember–December along the WFS, January for off-
shore areas, and February–March along the Florida 
Straits near the Florida Reef Tract. Lower quantile 
ranges show most prevalent clear water months (a–b) 
to be March–April in nearshore areas and in April– 
May along the WFS. In offshore areas especially alo-
ng the Florida Current, water clarity is generally clea-
rest in July–August. 

3.2 SOM-based Wind Patterns (WPs)  

Using the SOM-based clustering procedures outlined 
above, the resulting classification of wind patterns 
across the domain and each pattern’s monthly fre-
quency are displayed in Figure 4. The wind patterns 
are broadly arranged in ‘SOM-space’ with the stronger 
magnitude winds around the outside columns and 
rows, and weaker wind patterns towards the middle of 
SOM-space. In terms of wind direction, generally 
winds shift from westerly to easterly from left to right 
across SOM-space, and from southerly to northerly 
from top to bottom–exhibiting the organizing nature 
of the SOM procedure. The Sammon Map (Figure 5) 
shows the relative (dis)similarity between neighboring 
and distant patterns in terms of distance in SOM-space. 
For example, the differences between WPs along the 
top row of the SOM are not as great as the differ-
ences between WPs 1–6 along the bottom row as evid-
enced by the longer distance between patterns 1–6 
compared to the distance between patterns 25–30. 

The resultant wind patterns displayed herein com-
pare favorably with previous research on seasonal wind 
and circulation features evaluated for south Florida 
(Liu and Weisberg 2012; Mitchum and Sturges, 1982) 
with generally stronger north and west wind patterns 

 

 
 

Figure 2. Map of study region (A) and Hovmöller diagrams of (B) Kd mean and (C) standard deviation over a climatological annu-
al cycle, derived for 1997 to 2013. Hovmöller plots show daily running mean Kd distribution (B, top) and variability (C, bottom) over 
an annual cycle along a north-south latitudinal transect line (A–D) from approximately Sarasota, FL to Key West, joined with a lon-
gitudinal line along the 30 m isobath from Big Pine Key to approximately Key Largo (E–G).  
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Figure 3. Timing of clear and turbid water within a typical 
season. All available Kd images were binned within quantile 
ranges: A) 0%–5%, B) 5%–25%, C) 75%–95%, and D) 95%– 
100%, and the most prominent month of occurrence was calcu-
lated for each pixel.  Extremely clear (A; top) and clear water 
months (B; top) indicate when clearest waters are found in a 
typical season. Turbid (C; bottom), and extreme turbid water 
months (D; bottom) indicate when turbid waters are found in a 
typical season. 
 

in winter and lighter southerly winds in summer, mo-
ving anti-cyclonically around the Bermuda High. 

Along the bottom row in Figure 4, moving right to 
left (i.e., from WP6 to WP1) there is a marked transi-
tion from autumn-dominant patterns to winter-dom-
inant patterns, with strong north-easterly winds stem-
ming from a continental high pressure (WP4–WP6) 
transitioning to north and northwesterly (WP1–WP3) 
as mid-latitude synoptic-scale systems begin pene-
trating further south, making frontal situations and 
regional cyclonic flow more frequent. Over the course 
of autumn as the summer trade winds wane and mid- 
latitude weather becomes more influential, a stronger 
northerly component to the wind becomes noticeable 
(Liu and Weisberg 2012). Eventually light and varia-
ble trade winds and anticyclonic flow again dominate 
in the summer, as shown with the WPs in the top mid-
dle of the SOM (i.e., WPs 15–17; 20–23; 26–29). 

In addition to these primary seasonal modes cap-
tured by the SOM, many WPs also display secondary 
synoptic features within season. For example, WPs in 
the lower left corner of the SOM (WPs 7, 1, 2, and 3) 
represent common post-frontal situations with a strong 
northerly component to the winds. These WPs often 

 

 
 

Figure 4. SOM-based network of wind pattern nodes of mean daily near-surface (10 m) wind speed (colors) and direction (arrows) 
when each wind pattern (WP) occurs. WP numbers are indicated in the lower right hand corner of each node. Average monthly fre-
quency (from January to December) of each WP is indicated by the bars above each map, with the top of bar-graph’s vertical axis 
indicating 10% frequency in each month. WP node 1 (bottom left corner) represents a winter dominant pattern with generally strong 
northwesterly daily wind fields.  
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Figure 5. Sammon map for Wind SOM shown in Figure 4  
 

 
follow the pre-frontal WPs in the upper right corner of 
the SOM (WPs 29, 30, 24,  18) during the transition 
seasons (spring & autumn), possibly catching the back- 
side of a continental high moving offshore, but also by 
frontal conditions depicted by WPs on the left side of 
the SOM (WPs 13, 19, and 25) in all seasons.  

3.3 Wind Patterns and Kd Spatial Patterns  

Results suggest a general relationship between active 
northerly wind patterns, frontal situations and storms, 
and more active periods of elevated Kd and Kd events. 
In order to further isolate specific wind patterns 
in connection with Kd events, spatial Kd patterns and 
daily co-occurrence with WPs in SOM-space were 
evaluated in greater detail. KDI monthly median ratio 
(Figure 6A) and KDI percent change (Figure 6B) 
maps for each WP reveal elevated, neutral, or dimin-
ished KDI spatial distribution patterns during days 
when each WP occurred. For space considerations, 
months of November through March were averaged 
and shown in two calendars. For all 30 WPs evaluated, 
WPs 1, 2, and 3 (Post-frontal) along the bottom axis 
showed the strongest spatial association with elevated 
KDI in the months depicted, with a weaker association 
in summer (not shown). In particular, elevated KDI 
above median conditions were most apparent for WPs 
1–3 for expansive areas along the West Florida Shelf 
(circles; Figure 6); WPs 4, 5, and 6 f or Gulf Coast 
areas north of the Florida Keys; and WPs 18, 24, and 
30, mainly along the Florida Strait, slightly seaward of 
the Florida Reef Tract. Positive KDI signals were also 

 
A)                                                         B) 

 
 

Figure 6. SOM-space map of blended MODIS and SeaWiFS climatological KDI associations for November–March, calculated as A) 
the ratio of the KDI median on dates when each WP occurred to the grand median monthly KDI value for the 16-yr period; and B) 
the difference between the probability of elevated KDI events for each WP and the overall probability of elevated KDI for all WPs. 
KDI events defined as KDI > 1.5 (See methods for full description).The figure enables visualization of positive (poor clarity; or-
ange–red in circles) and negative (good clarity; blue) KDI conditions associated with each WP. Gray areas indicate no data are avail-
able (generally because of cloud cover). 
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evident for WPs 7, 13, and 25 in winters, but less con-
sistent across all months.  

Positive KDI spatial patterns favor an association 
with strong northerly post-frontal patterns in SOM- 
space, hinting at a strong within-season influence. The 
strongest response was associated with WP1 with nor-
malized KDI well above 3, indicating a greater asso-
ciation when winds have their greatest magnitudes 
and blow parallel to the western Florida coastline. 

3.4 Wind Pattern Transitions During Kd Events 

While elevated anomalous Kd and KDI was most evi-
dent for WPs 1–6, a more detailed analysis of the 
transitional nature of the winds on days leading up to 
the event provides a better understanding of precurso-
ry patterns and lag-response mechanisms linked to 
severe turbidity events. In particular, we were inter-
ested in which WPs occurred more frequently in se-
quence with WPs1–3 prior to Kd event. After ranking 
all counts of WPs and co-occurrences with WP1, 2, or 
3, from most to least frequent during elevated KDI 
(KDI > 1.5), the leading nodes 1 to 3 days prior to Kd 
event are shown in Table 2. WPs showing highest co-
unts (ranks) prior to Kd event were WP1 (74), WP30 

(34), WP13 (29), and WP25 (28) transitioning to 
WPs1–3 (Table 2A). A second ranking was performed 
on Kd events when WPs4-6 occurred (Table 2B), 
showing highest counts prior to Kd event as WP1 (11), 
WP18 (10), WP6 (7), and WP2 (6). 

Using the rank scores of all wind sequences leading 
to elevated Kd conditions, the most recurring wind 
transitions are shown in schematic form (Figure 7) 
where three different transitions are identified: 1)  
Figure 7A reveals pre-frontal patterns (WPs 13, 19, 
and 25) transitioning into a post-frontal pattern, wh-
ereby gulf-origin winds shift from southwesterly, or 
westerly to northerly; 2) Figure 7B reveals a s outh-
easterly pattern (30) transitioning into a post-frontal 
pattern, whereby winds from the Caribbean Sea shift 
to take on a more northerly component; and 3) Fig-
ure 7C reveals strong post-frontal patterns transition-
ing to a strong easterly patterns. These transitions oc-
cur predominantly between November–March and 
represent scenarios in which suspended particulate or 
dissolved material are more likely to be re-suspended 
and mixed with surface waters, and subsequently 
transported offshore. 

Composite maps of median KDI distribution for  
 
Table 2. Total counts (days) in SOM-space of WP nodes occurring 1–3 days prior to A) WPs1, 2, or 3 along transect line (A–B; Fig-
ure 2), and B) WPs 4, 5, or 6 along transect (C–D; Figure 2) during elevated KDI (> 1.5). Orange indicates top 6 ranks. The figure 
enables visualization of WPs occurring in sequence during Kd events. 

A) Prior to WPs 1,2, or 3  B) Prior to WPs 4, 5, or 6 

28 5 5 2 11 34   4 0 1 0 0 4 

20 6 3 3 1 13  2 0 0 3 2 2 

29 8 6 12 6 7  4 2 0 0 1 10 

19 13 7 7 5 4  3 1 1 2 4 5 

74 23 17 11 1 1  11 6 0 4 5 7 
 

 
 

Figure 7. Schematic of WP transitions most associated with elevated Kd events (KDI > 1.5).  Arrows represent wind transitions 1 to 
3 days prior to Kd event to day of event; A) Pre-frontal pattern 25, 19, or 13 transitioning to post-frontal patterns 1,2, or 3; B) 
Pre-frontal pattern 30 transitioning to post-frontal patterns 1, 2, or 3; and C) Post-frontal patterns 1, 2,or 3 transitioning to strong 
easterly patterns 4, 5, or 6.  
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specific WP transitions are shown for November– 
March (Figure 8). This figure shows the spatial distri-
bution of KDI when WP1, 2, or 3 occurred 1–3 days 
following incidences of WP13 (A), WP25 (B), WP30 
(C), and anticyclonic WPs (14, 15, 16, 17, 20, 21, 22, 
23, 27, or 28), indicating that Kd is well above normal 
over a large portion of the study domain when post- 
frontal WPs (1, 2, 3) are either preceded by pre-frontal 
or frontal patterns (Figure 8A and B; WP 13, 25, or  8C; 
30), but deviations are neutral or below normal when 
post-frontal patterns are preceded by anticyclonic patterns 
(Figure 8D). 

Comparisons of time series of autumn/winter KDI 
values along the transect with daily co-occurrences of 
transitional WPs 1, 2 , 3, 1 3, 25, a nd 30 r eveal Kd 
events and coincidence with WP in greater detail 
(Figure 9). Kd peaks can be seen as both heightened 
periods spanning 1–3 months (circles) and shortened 

pulses spanning days to weeks (arrows). For example, 
elevated KDI during winter and spring of 1997/1998, 
autumn of 2004, autumn–winter of 2005/2006 and 
winter of 2010 were particularly evident. Of note are 
the latent peaks and residuals associated with late 
summer–fall cyclones (dashed circles) not coinciding 
with transitional winds, including tropical storm Ga-
brielle (2001), Hurricane Charley and Tropical De-
pression Ivan (2004), and Hurricanes Katrina and Rita, 
and Tropical Storm Wilma (2005). Also apparent is 
the sustained KDI peak during the El Niño–Southern 
Oscillation winter of 1997/1998 and active increase in 
transitional wind patterns. Lastly are the winter storm 
events during December of 2004, and the aforemen-
tioned prolonged event during winter 2010 resulting in 
elevated KDI along the northern side of the tran-
sect beginning in January, impacting areas along the 
gulf side of the Florida Keys in February, moving 

 

 
 

Figure 8. Median KDI during specified wind transitions; A) WP 1, 2, 3 (Post-frontal) following prefrontal/cyclonic WP13; B) 
Post-frontal following frontal WP25; C) Post-frontal following prefrontal WP30; and D) Post-frontal following anticyclonic patterns 
(WPs 14, 15, 16, 17, 20, 21, 22, 23, 27, or 28). KDI median was calculated for all incidences where WPs 1, 2, or 3 occurred 1 to 3 
days following prefrontal, frontal or anticyclonic patterns described above. The figure enables visualization of positive (poor wa-
ter clarity; orange) and negative (clear water; cyan) KDI response associated with synoptic wind pattern transitions. 
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A) 

 
B) 

 
 

Figure 9. Hovmöller diagram of daily-scale KDI values along the transect from Figure 1A(A–G), calculated for 1998–2005 (A; top) 
and 2005–2013 (B; bottom), including data from November through March. Time series of WP combinations 1, 2, or 3 (red), 13, or 
25 (yellow) and 30 (orange) are shown above KDI time series. Normalized KDI values with WPs provide visualization of Kd events 
and influencing mechanisms associated with short duration transitional wind fields (arrows), episodic tropical cyclones or blackwater 
events (dashed circles), and winter storms (circles). 

 
downstream affecting the Florida Reef Tract and 
Florida Straits in March. 

4. Discussion 

Water clarity in South Florida coastal waters varies 
across multiple time and space scales with most ele-
vated Kd conditions and variability occurring during 
the late autumn and winter season. Autumn to winter 
Kd peaks are evident along most of the WFS, with 
winter to early spring peaks exhibited along sections 
of the Florida Straits. Climatological analysis of Kd 
shows highest variability associated with 1) tropi-
cal cyclones in late summer and autumn, coupled with 
increased frontal passage and wind-resuspension eve-
nts in December through February, and 2) seasonal 
transitions typically in November and March, with the 
most elevated Kd along the Florida Straits just outside 
of the Florida Reef Tract occurring in March. 

In terms of within-season Kd variability, during the 
initial weeks of the cold season in autumn, stronger 

northeasterly and northerly winds coincide with gen-
erally higher Kd values regionally. During the onset of 
the winter season after several fronts pass and particle 
resuspension occurs more frequently, the highest val-
ues of Kd are evident. During the spring transition in 
March–April and into the summer wet season, flow is 
dominated by a southeasterly circulation, when the 
region is under Bermuda High-dominated flow with 
anticyclonic regional circulation (Sheridan et al, 2012) 
at a time when generally lower Kd conditions prevail.  

4.1 SOM-Space Patterns and Implications to Water 
Clarity Processes 

Wind effects on Kd response vary substantially across 
SOM-space. WPs along the lower horizontal axis were 
linked to elevated, heterogeneous Kd spatial response, 
with more shelf-wide response in association with 
WPs 1–3, and southern shelf response in association 
with WPs 4–6. This may be due to transport, dispersal 
and/or settling of re-suspended materials from the 
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north to the south after the initial Kd event, or re-
newed resuspension of materials north of the Florida 
Keys due to topography and strong easterly compo-
nent winds unique to WPs 4–6. WPs (13, 19, 25, and 
30) along the left and right vertical axes appear to re-
spond in sequence with bottom horizontal axis nodes, 
especially during heightened Kd situations, with the 
key linkage being frontal and prefrontal WPs occur-
ring 1–3 days before post-frontal WPs. The occur-
rence of WPs 13, 25 and 30 are most consistently ob-
served with WPs 1–3, and likewise sequenced with 
elevated Kd values. WPs 13 and 25 did not show ele-
vated Kd response when analyzed alone. Similarly, 
incidences of WPs 1–3 preceded by anti-cyclonic pat-
terns did not show elevated Kd response (Figure 8).  

The presence of transitional winds associated with 
strong southerly, followed by strong northerly wind 
patterns over consecutive days is quite likely the most 
prominent wind scenario related to elevated Kd levels. 
We consider WP 13 and WP 25 to be most similar to a 
pre-frontal or cyclonic situation whereby precipitation 
may ensue and add to the effect on enhanced Kd sig-
nals. Although not presented in this study, WP 25 had 
the highest median precipitation for any node. WP 30 
was most consistent with extreme precipitation and 
highest mean precipitation during autumn and winter 
months only. WP 25 is associated with stronger south-
westerly flow over the entire domain, enhanced gulf/ 
tropical moisture, and possible instability. Conse-
quently, WP 30 s howed a similar increase in south-
easterly flow over the entire domain.     

4.2 Kd Events and Causal Factors 

In assessing overall causal factors to Kd events pre-
sented as part of this paper, two modes of variability 
are speculated to promote anomalous increases in Kd 
as expressed in the KDI. The primary mode relates to 
episodic tropical cyclones, discharge events and ex-
pansive bloom periods that can impact the region-
al clarity patterns over monthly timescales. This was 
particularly evident for the enhanced Kd residuals in 
the autumn of 2001, w inter of 2002, a nd autumn of 
2004/2005. These events generally coincided with 
elevated precipitation associated with tropical storms, 
active black water events and/or water column mixing, 
as was the case in winter 2001/2002, where a large bl-
ack water event occurred simultaneously with a dia-
tom and toxic red tide bloom along West Florida Shelf 
(Hu et al, 2003). The co-occurring blooms combined 
with water containing large amounts of CDOM caus-

ing increased light attenuation throughout the period. 
The secondary mode relates to shorter term Kd spikes 
associated with winter storms and extremely active 
weather situations with increased cold front passage 
and transitional wind fields. This was particularly ev-
ident during the winter storm event in December 2004 
(Conmy et al, 2009), and the January–March 2010 
event. Wind patterns during these events are speculat-
ed as major contributors to sediment resuspension/ 
transport and particle release from red tide or dia-
tom blooms in nearshore waters and Kd spikes in the 
time series. We suspect water clarity variability is 
driven by the primary in-water factors mentioned 
above coupled with the effects of wind resuspension, 
and wind-induced transport.  

Although multiple limiting factors are responsible 
for water clarity changes in South Florida, studies in-
volving direct wind influences on clarity are few.  
We believe wind mechanisms are inherent to elevated 
spatial Kd signals and possible impacts on ha bitats 
and species, mainly due to the profound triggering 
influence of winds on bottom sediment and suspended 
particle mixing, dispersal and transport. Black water 
discharge events and large algal blooms may not cause 
widespread clarity issues until the direct influences of 
the wind forcing acts as a dispersal agent transporting 
materials downstream from riverine sources.   

During the active and extreme weather in Janu-
ary–March of 2010, decreased water clarity was evi-
dent throughout the region (Figure 7). Excessive KDI 
values were observed for the middle Florida Keys, and 
WFS, for two months’ worth of observations, yet the 
area was not directly impacted by a t ropical cyclone 
the fall of 2009, or excessive bloom activity prior to 
the event (Hu, unpublished data). Barnes et al. (2013) 
summarized that north-to-south wind disturbances 
likely altered subtidal transport through channels 
along the Florida Keys, thus contributing to spikes in 
Kd during that event. 

In addition, dynamical features including subti-
dal currents, mesoscale eddies and upwelling/down-
welling episodes influence particle transport along the 
Florida Shelf and Florida Reef Tract and are influ-
enced heavily by local and regional wind forcing (Liu 
and Weisberg, 2012; Gramer, 2013). Heightened Kd 
north of the Florida Keys are likely influenced by 
transport processes, and vertical and horizontal mixing; 
whereas areas along the WFS are likely influenced 
more through direct discharge, related oceanographic 
currents, and wind-induced Ekman transport/ upwell-
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ing, exacerbated by transitional wind fields. Finally, 
areas south of the Florida Keys along the Florida Reef 
Tract and Florida Straits are typically exposed to in-
creased onshore flow especially during spring/autumn 
transition months, with associated upwelling, wave 
and tidal amplitude influence, and enhanced horizon-
tal mixing (Gramer et al, 2008; Gramer, 2013) from 
eddies, likely causing enhanced Kd signals just south 
of the Reef Tract. 

5. Summary and Conclusion 

Wind is a key variable in determining changes in 
sediment resuspension and water clarity patterns. 
Winds are dominant mechanisms for coastal transport, 
influencing mixed layer depth, photic depth, wave he-
ight and tidal amplitude. This investigation sought to 
identify key wind nodes and patterns that showed a 
strong association with elevated Kd and KDI values. 
Since Kd spatial response was strongly linked to cer-
tain wind patterns, specifically WPs 1–6, 13, 25, and 
30, we believe the SOM-based methods presented 
here provided unprecedented resolution to the key 
synoptic-scale influence of winds on water clarity. The 
specific wind patterns borne out of synoptic climato-
logical methods can be used to develop precursory 
early warning signals for water clarity events, espe-
cially considering the lagged effect of WPs on t he 
days preceding these events.  

The importance of synoptic-scale winds in the ex-
pression of water clarity patterns has many implica-
tions in coastal resource and water quality manage-
ment issues in Florida. Firstly, regional wind patterns 
and forcing may have profound implications in terms 
of climate change influence. Wind response is a man-
ifestation of the overlying circulation. Climate change 
will likely bring about changes to atmospheric circu-
lation and cases of extreme weather events (Francis 
and Vavrus, 2012), with subsequent changes in wind 
forcing and storms along the Florida coast. Thus, our 
focus on synoptic-scale winds may be useful in help-
ing downscale global circulation changes to local wa-
ter clarity changes in response to climate change. 
Secondly, both acute and prolonged cases of reduced 
water clarity can be consistently measured through 
satellite imagery. We believe the blended satellite data 
products of KDI and wind derivatives presented here-
in provide more than adequate resolution of wind- 
resuspension processes and spatial coverage needed 
for predicting water clarity changes, and thus can be 

effective tools for South Florida’s water quality man-
agement programs. In addition, satellite observations 
of water clarity can be extracted and applied in broad-
er biogeographic marine contexts for marine spatial 
planning applications and environmental impact eval-
uations in marine protected areas including the Florida 
Keys National Marine Sanctuary.  

This investigation sought to identify both typical 
and atypical wind patterns most directly linked to ele-
vated light attenuation and how these patterns interact 
within the South Florida system. These more-resolved 
representations of regional circulation and associated 
wind patterns provide insights into precursor wind 
scenarios leading up to potentially harmful light at-
tenuation events. Further, while previous water clarity 
studies have exploited the coupling of wave frequency, 
wave height, wind magnitudes, river discharge leading 
to sediment resuspension, and the lag- response char-
acteristics in relation to photic depth (Fabricius et al, 
2016; Chen et al, 2007), such studies do not  isolate 
specific wind patterns as precursors to “bad” wa-
ter clarity conditions. The wind pattern-based meth-
odology developed herein, when combined with other 
drivers, will improve predictions of water clarity 
events and could prove useful in understanding how 
the system will respond to future human-induced al-
terations. Lastly, since clear, healthy water is funda-
mental to Florida’s tourism industry and to the local 
economies that rely on high visibility of in-water con-
ditions (Leeworthy et al, 2004); application of these 
methods could also be broadened to support planning 
and logistics in related economic activities such as 
SCUBA diving, snorkeling, and recreational/comm.-
ercial fishing.  
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